Foreword

On behalf of the Steering and Program Committees, we would like to welcome you to the European Test Symposium 2007 (ETS’07), the largest event in Europe that is entirely devoted to presenting and discussing trends, emerging results, hot topics, and practical applications in the area of electronic-based circuit and system testing. ETS’07 is the 12th edition of this symposium, and it is held in Freiburg (Germany), the sunny capital of the Black Forest, in the heart of Europe close to the French and Swiss borders.

ETS continues its well-established format with one day of tutorials, a three-day technical program, and an attractive social event. The symposium’s technical program consists of two plenary keynote addresses, technical paper presentations in three parallel sessions, four embedded tutorials, poster sessions, two panels, and one special session. Several test-related fringe events complete the “European Test Week”, which includes the 3rd edition of the IEEE European Board Test Workshop and the 4th IEEE International Workshop on Silicon Debug and Diagnosis.

ETS’07 received a large number of contributions from all over the world, submitted to the scientific track, workshop track (including emerging ideas and case studies), vendor sessions, and special sessions. All submissions underwent a rigorous review process. For the scientific and workshop tracks, each paper has been reviewed on average by 6.8 reviewers. At a full-day TPC meeting, held on February 2, 2007 at Linköping, Sweden, all papers were discussed and evaluated. Based on the reviews and the discussions, 27 scientific track papers were selected for inclusion in the ETS’07 Formal Proceedings. In addition, 11 workshop track papers were selected, alongside 15 vendor session presentations; most of these have corresponding papers in the ETS’07 Informal Digest of Papers. Finally, 30 submissions were selected for poster presentations.

The European Test Symposium is the achievement of the contributions of many volunteers, who give generously their time to contribute to the success of the symposium. We would like to thank all for their efforts. We are confident that you will find EST’07 a productive and exciting experience, and would like to welcome you to Freiburg.

Bernd Becker
General Chair

Zebo Peng
Program Chair

Hans-Joachim Wunderlich
Program Vice-Chair

Christian Landrault
Publication Chair

Presentations are marked as follows:

- formal
- informal
- vendor
Committees

Organizing Committee

General Chair B. Becker : Universität Freiburg, D
Vice General Chair M. Sonza Reorda : Politecnico di Torino, I
Program Chair Z. Peng : Linköpings Universitet, S
Vice Program Chair H.-J. Wunderlich : Universitàt Stuttgart, D
Local Organization Chair P. Engelke : Universität Freiburg, D
Panel Chair P. Prinetto : Politecnico di Torino, I
Industrial Relations Chair P. Muhmenthaler : Infineon Technologies, D
Publication Chair C. Landrault : LIRMM, F
Finance Chair I. Polian : Universität Freiburg, D
Tutorials Chair J. Figueras : UPC Barcelona, E
Embedded Tutorial Chair P. Girard : LIRMM, F
Asian Liaison C.-W. Wu : National Tsing-Hua University, TW
Pacific Liaison A. Osseiran : Edith Cowan University, AUS
North-American Liaison A. Singh : Auburn University, USA
Latin-American Liaison L. Carro : UFRGS, BR

Local Organizing Committee

Local Arrangements P. Engelke
Finance I. Polian
Local Publications M. Lewis, T. Eschbach
R. Wimmer, K. Biedermann
Registration M. Herbstritt
Web S. Spinner
Accommodations A. Fabry-Flashar

Steering Committee

Chair C. LandraULT : LIRMM, F
B. Al-Hashimi : University of Southampton, UK
B. Becker : Universität Freiburg, D
J. Figueras : Universidad Politécnica de Cataluña, E
E.J. Marinissen : NXP Research, NL
P. Muhmenthaler : Infineon Technologies, D
Z. Peng : Linköpings Universitet, S
P. Prinetto : Politecnico di Torino, I
M. Renovell : LIRMM, F
M. Sonza-Reorda : Politecnico di Torino, I
J.P. Teixeira : IST/INESC, P
H.-J. Wunderlich : Universität Stuttgart, D
Y. Zorian : Virage Logic, USA

Program Committee

Topic Chairs B. Al-Hashimi : University of Southampton, UK
S. Hellebrand : Universität Paderborn, D
H. Kerkhoff : University of Twente, NL
E. Larsson : Linköpings Universitet, S
E.J. Marinissen : NXP Research, NL
C. Metra : University of Bologna, I
M. Renovell : LIRMM, F
J. Tyszer : Poznan University of Technology, PL

Members E.J. Aas : Norwegian University of Science, N
M. Abdir : Motorola, USA
R. Aitken : ARM Artisan, USA
W. Anheier : Universität Bremen, D
F. Azais : LIRMM, F
L. Balado : Universidad Politécnica de Cataluña, E
A. Benso : Politecnico di Torino, I
G. Carlsson : Ericsson, S
<table>
<thead>
<tr>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. Chakrabarty : Duke University, USA</td>
</tr>
<tr>
<td>W. Daehn : HS Magdgbg.-Stendal, D</td>
</tr>
<tr>
<td>R. Dorsch : IBM Entwicklungs GmbH, D</td>
</tr>
<tr>
<td>M.-L. Flottes : LIRMM, F</td>
</tr>
<tr>
<td>G. Francis : NXP Semiconductors, UK</td>
</tr>
<tr>
<td>H. Fujiwara : NAIST, J</td>
</tr>
<tr>
<td>F. Fummi : University of Verona, I</td>
</tr>
<tr>
<td>D. Gizopoulos : University of Piraeus, GR</td>
</tr>
<tr>
<td>E. Gramatova : Slovak Academy of Sciences, SK</td>
</tr>
<tr>
<td>S. Hamdioui : Delft University of Technology, NL</td>
</tr>
<tr>
<td>C. Hill : Mentor Graphics, UK</td>
</tr>
<tr>
<td>M. Hirech : Synopsis, USA</td>
</tr>
<tr>
<td>A. Hlawiczka : Silesian University of Technology, PL</td>
</tr>
<tr>
<td>M.S. Hsiao : Virginia Tech, USA</td>
</tr>
<tr>
<td>P. Hughes : ARM, UK</td>
</tr>
<tr>
<td>A. Ivanov : University of British Columbia, CAN</td>
</tr>
<tr>
<td>R. Kapur : Synopsys, USA</td>
</tr>
<tr>
<td>S. Kajihara : Kyushu Institute of Technology, J</td>
</tr>
<tr>
<td>B. Kruseman : NXP Research, NL</td>
</tr>
<tr>
<td>S. Kundu : University of Massachusetts, USA</td>
</tr>
<tr>
<td>H. Lang : Freescale Semiconductor, D</td>
</tr>
<tr>
<td>M. Lubaszewski : UFRGS, BR</td>
</tr>
<tr>
<td>Y. Makris : Yale University, USA</td>
</tr>
<tr>
<td>H. Manhaeve : QStar Test, B</td>
</tr>
<tr>
<td>T. Margaria : Universität Göttingen, D</td>
</tr>
<tr>
<td>P. Maxwell : Micron Technology, USA</td>
</tr>
<tr>
<td>L. Miclea : Technical University of Cluj-Napoca, RO</td>
</tr>
<tr>
<td>S. Mir : TIMA CMP, F</td>
</tr>
<tr>
<td>Y. Miura : Tokyo Metropolitan University, J</td>
</tr>
<tr>
<td>W. Moore : Oxford University, UK</td>
</tr>
<tr>
<td>N. Nicolici : McMaster University, CAN</td>
</tr>
<tr>
<td>F. Novak : Jozef Stefan Institute, SLO</td>
</tr>
<tr>
<td>O. Novak : TU Prague, CZ</td>
</tr>
<tr>
<td>A. Orailoglu : UCSD, USA</td>
</tr>
<tr>
<td>S. Ozev : Duke University, USA</td>
</tr>
<tr>
<td>A. Paschalis : University of Athens, GR</td>
</tr>
<tr>
<td>A. Pataricza : Budapest University of TE, H</td>
</tr>
<tr>
<td>F. Poehl : Infineon Technologies, D</td>
</tr>
<tr>
<td>J. Raik : Tallinn University, EE</td>
</tr>
<tr>
<td>J. Rajški : Mentor Graphics, USA</td>
</tr>
<tr>
<td>A. Richardson : Lancaster University, UK</td>
</tr>
<tr>
<td>J. Rivoir : Agilent Technologies, D</td>
</tr>
<tr>
<td>C. Robach : ESISAR, F</td>
</tr>
<tr>
<td>P. Rosinger : University of Southampton, UK</td>
</tr>
<tr>
<td>B. Rouzeyre : LIRMM, F</td>
</tr>
<tr>
<td>A. Rueda : CNM, E</td>
</tr>
<tr>
<td>G. Russell : Newcastle University, UK</td>
</tr>
<tr>
<td>P. Sanchez : Universidad de Cantabria, E</td>
</tr>
<tr>
<td>J. Segura : Universitat de les Illes Balears, E</td>
</tr>
<tr>
<td>B. Straube : EASI15 FhG, D</td>
</tr>
<tr>
<td>J.-P. Teixeira : IST/INESC, P</td>
</tr>
<tr>
<td>N. Touba : University of Texas, USA</td>
</tr>
<tr>
<td>R. Ubar : Tallinn University, EE</td>
</tr>
<tr>
<td>B. Vermeulen : NXP Research, NL</td>
</tr>
<tr>
<td>C. Wegener : Infineon Technologies, D</td>
</tr>
<tr>
<td>M. Zwolinski : University of Southampton, UK</td>
</tr>
</tbody>
</table>
Practices in Analog, Mixed-Signal, and RF Testing
Salem ABDENNADHER : Intel Corporation, USA · Saghir A. SHAIKH : Cadence Design Systems, USA

Summary Most analog, mixed-signal and RF testing in industry today involves specification-based testing using Automatic Test Equipment (ATE). However, some companies employ alternative solutions to ATE testing that use DFT and BIST. This tutorial presents a brief overview of the industry practices in mixed-signal testing and RF testing. It includes testing examples of wired and wireless transceivers (an essential part of ultra high-speed networks). Plus, it discusses the testing challenges of System in Package (SiP), an emerging technology, and some of the feasible DFT solutions.

Intended Audience This tutorial is most suitable for design, test and DFT engineers involved in actual implementation of mixed-signal and wireless devices and systems. The architects and engineering managers would also greatly benefit from this tutorial.

Curriculum vitae Salem Abdennadher, Senior Staff DFX Engineer, Intel Corporation, has fourteen years of experience in mixed-signal design and DFT. Soon after graduating with Masters from Oregon State University 1992, he joined the industry and has worked with a research lab in France, Motorola, Level One Communications and Intel. His recent publications and international patent filing in mixed-signal DFT/BIST range from Filter BIST and On-chip Jitter BIST, to mixed-signal behavioral modeling and noise extraction and prediction.

Saghir A. Shaikh, Ph.D., Senior Core Competency Technical Leader at Cadence Design Systems, a graduate of the University of Texas at Austin 1996, Dr. Shaikh has eleven years of industrial experience in DFT at Intel Corporation, Sun Microsystems and Level One Communications, Inc. He has authored more than a dozen research papers which are presented in various conferences such as ITC, ICCAD, and VTS.

Both also have presented six tutorials through TTEP at ATS’04, LATW’05, VTS’05, ITC’05, ITC’06 and DATE’07 and are invited speakers for the ATS’05 industry challenges session.
Statistical Screening Methods targeting “Zero defect” IC Quality and Reliability Adit D. SINGH: Auburn University, USA

Summary The wide variation in normal process parameters now being observed in advanced semiconductor processes can sometimes cause the electrical impact of subtle manufacturing defects to remain within the acceptable range during test, thereby masking defect detection. Such undetected manufacturing flaws can potentially cause functional failure under untested operating conditions; they can also behave as latent reliability defects that “grow” over time to cause early life failure. Test methodologies that target “zero-defect” product quality requirements must address such test escapes by using innovative statistical methods to screen out passing parts that have a significant likelihood of field failure. Advanced screening methods fall into two broad categories: those that exploit the statistics of defect distribution on wafers — suspecting passing die in “bad” neighborhoods; and those that exploit the correlation in performance parameters on wafers — suspecting passing die that are performance outliers within local regions of the wafer. This tutorial will present screening methodologies that span both these categories, and illustrate their effectiveness using results from a number of recently published experimental studies on production circuits from IBM, Intel, LSI Logic, and NXP Semiconductor.

Intended Audience Test and Reliability Engineers, Engineering Managers, Reliability and Quality Assurance Managers, Researchers and Research Students.

Curriculum vitae Adit D. Singh is James B. Davis Professor of Electrical and Computer Engineering at Auburn University, where he directs the VLSI Design and Test Laboratory. His technical interests span all aspects of VLSI design, test and reliability. He has published about one hundred fifty research papers, served as a consultant to several major semiconductor companies, and holds international patents that have been licensed to industry. Singh received the B.Tech from IIT Kanpur, and the M.S. and Ph.D. from Virginia Tech, all in Electrical Engineering. He is a Fellow of IEEE.
19:00 Welcome to Freiburg

Organ Concert
Prof. Klemens Schnorr at the Marienorgel
at the Freiburger Münster

The four organs of the Freiburger Münster were built in 1964/65. Main instrument is the Marienorgel on the left of transept (61 stops, 4 manuals and pedal), as well as the Choir organ built by Rieger, Schwarzach/Austria. The Choir organ was changed in 1990 and translated from the left to the right side. The organ in the main nave is built by Marcussen/Denmark, its organ case is inspired by the original instrument made by Jörg Ebert from Ravensburg in 1545. The 16th century sculptures of holy Mary (top) and the trumpet player (bottom) are still conserved. The organ on S. Michael choir in the tower was built by Freiburg organ builder Späth. All four organs with totally 136 stops can be played at the central console in the choir.

19:30–21:30 Welcome Reception

Historical Merchant House, Münsterplatz.
To find the location have a look at the map on page 17.
See your flash of inspiration go into production.

As a university graduate or intern, you’ll be at the centre of the action in all phases of research, development and production. You’ll work side by side with the experienced engineers whose resourcefulness and inventiveness have made our company so successful. With a staff of more than 4,000 and over 40 subsidiaries in Germany and abroad, we are one of the world’s market and technology leaders in sensor electronics. We have ambitious plans for the future – and wide open doors for new talent. Your ideas count.

Engineering students wanted for career entry, final year project or internship
www.sick.com/karriere
MONDAY, MAY 21ST, 2007

8:30–9:00 Plenary Opening
Hans-Joachim Wunderlich : Universität Stuttgart, DE
ETS’07 Vice Program Chair

Welcome Address
Bernd Becker : Universität Freiburg, Germany
ETS’07 General Chair

Technical Program Introduction
Zebo Peng : Linköpings Universitet, Sweden
ETS’07 Program Chair

Presentation of ETS’06 Best Paper Award
Erik Jan Marinissen : NXP Research, The Netherlands
ETS’06 Program Chair

9:00–9:45 Keynote
If It’s All About Yield, Why Talk About Testing?
Rene Segers : NXP Semiconductors, The Netherlands

Abstract
This talk will discuss the evolution of test and diagnosis, in the broad sense, over the recent years as well as the outlook into the future. Test, as it was only recently a pure discriminator between good and bad, has gained significant more added value by acting also a feedback loop towards the manufacturing process of Integrated Circuits. Of course this feedback loop was already there, but was limited to information on test bin level from a tester. In the last couple of years, this has changed dramatically, and we are now able to pinpoint to circuit coordinates and/or to circuit structures as potential candidates for low yield causes. By linking this diagnosis information to in-line data, a more than direct link to a root cause in the fab can be achieved. And this is not the end of the story. By linking diagnosis to the layout one should be able to even stronger and quicker close the loop between Design, Manufacturing and Test. All of the above will be discussed in the talk, which in a sense could mean that the talk is all about DfX, Design for eXcellence…

Curriculum vitae
After having finished his studies at the Technical University of Eindhoven, and after the then regular period of military service, Rene Segers started his career at Philips Research. There he led the introduction of DfT in general and digital scan-test in particular into Philips. Since those early days he had various positions in Philips, including Consumer Electronics, the Centre for Manufacturing Technology and Philips Semiconductors. Last year, together with more than 30.000 others, he joined NXP semiconductors where he is now DfX program manager. Until a couple of years ago Rene also acted as a professor in test technology at the Technical University in Eindhoven.
Electronics Design-For-Test: Past, Present and Future

Ben Bennetts: Bennetts Associates, United Kingdom

Abstract
Do you know how many ENIAC vacuum tubes were replaced every day during its heyday? What did it teach us about Test, or Design-For-Test? Did Eldred really invent the stuck-at fault model in 1959? Is 99.999% fault cover all it's cracked up to be or are we fooling ourselves? Are we better off with 115% or even 80%? Where did Design-For-Test come from? Where is it now? Where’s it heading? Is it true that boundary scan is the panacea of test? What are all these new Joint Test Action Groups – Internal, System and compact? Are they boondoggles, or are they serious?

Alongside all this, what does the price of oil, cheap airfares, global warming, text messaging for kids, sparrows in Leeuwarden, Skype, on-line social networking, IPTV, wearable electronics, Pat Gelsinger, Donald Rumsfeld, Clark Kent, Ella, Georgia and Emilie have to do with the future of test and DFT?

On the eve of his retirement after nearly 40 years in the test and DFT industry, the speaker will take a sometimes serious and sometimes irreverent look at the history, current status and projected future of the test and DFT industries, relating to various industries, various market segments (notably the hand-held consumer and telecommunication industries) and the way society is changing. Along the way many myths will be explored and dispelled, and social commentary added to explain certain projections.

Come, find out and be amused and amazed.

Curriculum vitae
Dr R.G. “Ben” Bennetts was an independent consultant in Design-For-Test (DFT), consulting in product life-cycle DFT strategies, and delivering on-site and open educational courses in DFT technologies. During his career, he worked for LogicVision, Synopsys, GenRad and Cirrus Computers. Between 1986 and 1993, he was a free-lance consultant and lecturer on Design-for-Test (DFT) topics. During this time, he was a member of JTAG, the organization that created the original IEEE 1149.1-1990 Boundary-Scan Standard. He was a core-group member of IJTAG and SJTAG (and currently the SJTAG Chairman Ementus), a co-founder and past Program Chair of the IEEE Board Test Workshop, a Steering Committee member of the IEEE European Test Workshop/Symposium for many years, founder of the IEEE European Board Test Workshop, and the founder and ex-Chairman of the IEEE’s BTTAC organisation. During the period 1968–2006, he published over 100 papers plus three books on test and DFT subjects. He retired from all DFT teaching and most DFT consulting on 31 December, 2006.
Interconnect Open Defect Diagnosis with Minimal Physical Information
Chen LIU : University of Iowa, USA · Wei ZOU : Mentor Graphics, USA · Sudhakar M. REDDY : University of Iowa, USA · Wu-Tung CHENG · Manish SHARMA · Huaxing TANG : Mentor Graphics, USA

DERRIC: a Tool for Unified Logic Diagnosis
Alexandre ROUSSET · Alberto BOSIO · Patrick GIRARD · Christian LANDRAULT · Serge PRAVOSOUHOUDVITCH · Arnaud VIRAZEL : LIRMM, France

11:00–12:30 Mixed Signal DFT and Test
Andrew Richardson : Lancaster University, UK
S. Kajihara : Kyushu Institute of Technology, JP

A Digitally Testable Capacitance-Insensitive Mixed-Signal Filter
Erik SCHÜLER · Marcelo NEGREIROS : Universidade Federal do Rio Grande do Sul, Brazil · Pascal NOUET : LIRMM, France · Luigi CARRO : Universidade Federal do Rio Grande do Sul, Brazil

Reducing the Influence of DC Offset Drift in analog IPs using the Thue-Morse Sequence as Stimulus
Jan SCHAT : NXP, Germany

Using current testing to improve test coverage in mixed-signal IC testing
Yang ZHONG : RWTH Aachen University, Germany · Liquan FANG · Henk VAN DE DONK : NXP Semiconductors, The Netherlands

11:00–12:30 Advanced DFT Tools
Peter Muhmenthaler : Infineon Technologies, DE
Einar J. Aas : Norwegian University of Science & Technology, NO

A Review of Power Strategies for DFT and ATPG
Richard ILLMAN · Brion KELLER · Sandeep BHATIA : Cadence, USA

ScanBurst – Scan Infrastructure and Environment for Highly Effective At-Speed Testing
Stephen PATERAS · Peter SHIELDS : LogicVision, USA

Realizing yield improvements with YieldAssist:
High Volume Scan Diagnosis and Analysis
Brady BENWARE : Mentor Graphics, USA
3A NoC Testing 14:00–15:30

Test Configurations for Diagnosing Faulty Links in NoC Switches
Jaan RAIK · Raimund UBAR · Vineeth GOVIND
Tallinn University of Technology, Estonia

Optimization of NoC Wrapper Design Under Bandwidth and Test Time Constraints
Fawnizu Azmadi HUSSIN · Tomokazu YONEDA · Hideo FUJIWARA
Nara Institute of Science and Technology, Japan

How to Implement an Asynchronous Test Wrapper for Networks-on-Chip Nodes
Xuan-Tu TRAN · Jean DURUPT · François BERTRAND · Chantal ROBACH
CEA-LETI, France

3B Advances in RF Test 14:00–15:30

FPGA Architecture for RF Transceiver System and Mixed-Signal Low Cost Tests
Ivo KOREN · Frank DEMMERLE · Roland MAY · Martin KAIBEL · Sebastian SATTLER
Infineon Technologies, Germany

Digital Generation of Signals for Low Cost RF BIST
Marcelo NEGREIROS · Luigi CARRO · Altamiro SUSIN
Universidade Federal do Rio Grande do Sul, Brazil

Variance Reduction for Supply Ramp Based Cheap RF Test Alternatives
Shaji KRISHNAN · René JONKER · Leon VAN DE LOGT
NXP Semiconductors, The Netherlands

3C Exciting Test Equipment 14:00–15:30

The FLEX Architecture – High Efficiency Multisite Test
Martin STADLER
Teradyne, Germany

Scalable System Platform for Cost Effective Mixed Signal Test Solutions
Bruce MacDONALD
LTX, USA

Solutions for Testing Complex SoCs
Martin FISCHER
Virage Logic, USA
Primary Input Vectors to Eliminate from Random Test Sequences for Synchronous Sequential Circuits
Irith POMERANZ : Purdue University, USA · Sudhakar M. REDDY : University of Iowa, USA

Reducing Test Data Volume for Deterministic BIST Via Test-Point Insertion Yang ZHAO · Dong XIANG : Tsinghua University, China · Krishnendu CHAKRABARTY : Duke University, USA

A Self-Correction Method for Change of Clock Signal Width Yukiya MIURA : Tokyo Metropolitan University, Japan

On Improving Channel Utilization in Testing NoC-Based Systems Jia LI : Chinese Academy of Sciences, China · Qiang XU : The Chinese University of Hong Kong, Hong Kong · Yu HU · Xiao-wei LI : Chinese Academy of Sciences, China

Logic Errors in CMOS circuits due to Simultaneous Switching Noise Florence AZAÏS · Laurent LARGUIER · Michel RENOVELL : LIRMM, France

Towards a test vector independent test response analyser for NoCs Kim PETERSÉN : HDC AB, Sweden · Johnny ÖBERG : KTH, Sweden

Analysis of Random Testbench for Data-Dominated Hardware Descriptions Iñigo UGARTE · Pablo SANCHEZ : Universidad de Cantabria, Spain

Accessibility to Embedded A/MS Cores: An Oscillation-Based S-R DFT Rahebeh NIARAKI ASLI : Iran University of Science and Technology, Iran · Zainalbedin NAVABI : Northeastern University, USA · Sattar MIRZAKUCHAKI : Iran University of Science and Technology, Iran · Michel RENOVELL : LIRMM, France

Implementation of security extension for IEEE Std 1149.1 and analysis of possible attack scenarios Franc NOVAK · Anton BIASIZZO : Jozef Stefan Institute, Slovenia

Pattern Generation for Composite Leakage Current Maximization Ashesh RASTOGI · Kunal GANESHPURE · Alodeep SANYAL · Sandip KUNDU : University of Massachusetts, USA
5A Diagnosis and Debug 16:30 – 18:00

Parallel Scan-Like Testing and Fault Diagnosis Techniques for Digital Microfluidic Biochips
Tao XU · Krishnendu CHAKRABARTY · Duke University, USA

Communication-centric SoC Debug using Transactions
Bart VERMEULEN · Kees GOOSSENS · Remco VAN STEEDELEN · University of Twente, The Netherlands · Martijn BENNEBROEK · Philips Research, The Netherlands

Debug Architecture of the En-II System-on-Chip
Bart VERMEULEN · Sjaak BAKKER · NXP Semiconductors, The Netherlands

5B Simulation and Verification 16:30 – 17:30

Electrical Simulation Model of the 2T-FLOTOX Core-Cell for Defect Injection and Faulty Behavior Prediction in eFlash Memories
Olivier GINEZ · Jean-Michel DAGA · Patrick GIRARD · Christian LANDRAULT · Serge PRAVOSSOUDOVITCH · Arnaud VIRAZEL · LIRMM, France

Test Circuit for Functional Verification of Automatically Generated Cell Library
M. GOMEZ · C. SILVA · S. BAVARESCO · C. ALEGRETTI · G. SARTORI · L. ROSA Jr · Universidade Federal do Rio Grande do Sul, Brazil · A. REIS · Nangate, USA · Renato RIBAS · Universidade Federal do Rio Grande do Sul, Brazil

5C Intelligent Test Flows 16:30 – 18:00

Multiple Benefit by Adaptive Testing
Gil BALOG · OptimalTest, Israel

New RF Test Technologies for lower cost and flexibility
Bill BURROWS · Aeroflex Test Solutions, United Kingdom

Enabling DUT-ATE Interaction
Frank GROSSMANN · SPEA, Germany
Logic BIST and Test-Data Compression: Friends or Foes?
Organizers: Ben Bennetts : Bennetts Associates, UK
Erik Jan Marinissen : NXP Research, NL

Abstract Just a few years ago, Logic BIST was presented as the one and only solution to virtually all test challenges: growing ATE costs, growing test application times, difficult test access to deeply embedded cores, etc. However, suddenly, in 2001, before mainstream acceptance of Logic BIST, the first commercial Test Data Compression tool was launched. This, and similar TDC products, seemed to have quickly gained foothold in the DfT market. This panel will address the following questions: Did TDC tools actually erode the market for Logic BIST tools? How do TDC and Logic BIST compare, in benefits and costs? Is the success of TDC a temporary thing, while the long-term solution still has to come from Logic BIST? What are companies offering or using today, and how do they expect that to change in the medium- and long-term future? Is the DfT space per chip big enough for both approaches to co-exist?

Panelists
Davide Appello : ST Microelectronics, Italy
Friedrich Hapke : NXP Semiconductors, Germany
Richard Illman : Cadence Design Systems, United Kingdom
Steve Sunter : LogicVision, Canada
Jürgen Alt : Infineon Technologies, Germany
Janusz Rajski : Mentor Graphics, USA
Tom Williams : Synopsys, USA

Low Power Test
Nicola NICOLICI : McMaster University, Canada · Xiaoqing WEN : Kyushu Institute of Technology, Japan

Abstract Excessive power during test affects the reliability of digital integrated circuits, test throughput and manufacturing yield. Numerous low power test methods have been investigated over the past decade and new power-aware automatic test pattern generation, design-for-test and test planning techniques have emerged. This embedded tutorial introduces the topic of low power test and it overviews the basic techniques and some recent advancements in this field.
A ETS’07 site
 Convention Center
B Reception site
 Historical Merchant House
C Tutorial site
 Katholische Akademie
D Central train station
<table>
<thead>
<tr>
<th>Time</th>
<th>Sunday, May 20</th>
<th>Monday, May 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00–10:30</td>
<td>TTEP Tutorials</td>
<td>08:00–08:30 Registration</td>
</tr>
<tr>
<td></td>
<td>Katholische Akademie</td>
<td>Concert House</td>
</tr>
<tr>
<td>10:30–11:00</td>
<td>Coffee</td>
<td>10:30–11:00</td>
</tr>
<tr>
<td>11:00–12:30</td>
<td>TTEP Tutorials</td>
<td>11:00–12:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Fault and Defect Diagnosis A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Mixed Signal DFT and Test B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Advanced DFT Tools</td>
</tr>
<tr>
<td>12:30–13:30</td>
<td>Lunch</td>
<td>12:30–14:00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30–15:00</td>
<td>TTEP Tutorials</td>
<td>14:00–15:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 NoC Testing A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Advances in RF Test B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Exciting Test Equipment C</td>
</tr>
<tr>
<td>15:00–15:30</td>
<td>Coffee</td>
<td>15:30–16:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:30–17:00</td>
<td>TTEP Tutorials</td>
<td>16:30–18:00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Diagnosis and Debug A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Simulation and Verification B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Intelligent Test Flows C</td>
</tr>
<tr>
<td>17:00–18:30</td>
<td>Registration</td>
<td>18:00–19:30</td>
</tr>
<tr>
<td></td>
<td>Dorint Hotel</td>
<td>1 Panel A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Embedded Tutorial A</td>
</tr>
<tr>
<td>19:00–19:30</td>
<td>Organ Concerto</td>
<td>20:00</td>
</tr>
<tr>
<td></td>
<td>Münster</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:30–21:30</td>
<td>Welcome Reception</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Historical Merchant House</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Tuesday, May 22</td>
<td>Wednesday, May 23</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>08:30–10:00</td>
<td>Memory Test A</td>
<td>Diagnosis & Yield Improvement A</td>
</tr>
<tr>
<td></td>
<td>Delay Faults, IEEE 1500, SJTAG B</td>
<td>Single Event Upsets B</td>
</tr>
<tr>
<td></td>
<td>Key Tech: Electrical Contacts C</td>
<td></td>
</tr>
<tr>
<td>10:00–11:00</td>
<td>Posters & Coffee</td>
<td></td>
</tr>
<tr>
<td>11:00–12:30</td>
<td>On-Line Testing and Self-Test A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fault Grading and Test Quality B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test Communities C</td>
<td></td>
</tr>
<tr>
<td>12:30–14:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETTC meeting</td>
<td></td>
</tr>
<tr>
<td>14:00–15:00</td>
<td>Embedded Tutorials</td>
<td></td>
</tr>
<tr>
<td>15:30–23:00</td>
<td>Social Event</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Staufen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Badenweiler</td>
<td></td>
</tr>
<tr>
<td>08:30–10:00</td>
<td>Posters & Coffee</td>
<td></td>
</tr>
<tr>
<td>11:00–12:30</td>
<td>Panel A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special Session B</td>
<td></td>
</tr>
<tr>
<td>12:30–14:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>14:00–15:30</td>
<td>Delay and Performance Test</td>
<td></td>
</tr>
<tr>
<td>15:30–16:00</td>
<td>Closing Session</td>
<td></td>
</tr>
<tr>
<td>16:00–19:00</td>
<td>Workshops: EBTW & SDD</td>
<td></td>
</tr>
<tr>
<td>Thursday, May 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:30–17:00</td>
<td>Workshops continued</td>
<td></td>
</tr>
</tbody>
</table>
TUESDAY, MAY 22ND, 2007

7A Memory Test 8:30 – 10:00
Matteo Sonza Reorda: Politecnico di Torino, IT
Jean-Michel Daga: Atmel, FR

PPM Reduction on Embedded Memories in System on Chip
Said HAMDIOUI · Zaid AL-ARS: Delft University of Technology, The Netherlands · Javier JIMENEZ · Jose CALERO: Design of Systems on Silicon DS2, Spain

An Integrated Built-in Test and Repair Approach for Memories with 2D Redundancy
Philipp ÖHLER · Sybille HELLEBRAND: Universität Paderborn, Germany · Hans-Joachim WUNDERLICH: Universität Stuttgart, Germany

Dynamic Two-Cell Incorrect Read Fault due to Resistive-Open Defects in the Sense Amplifiers of SRAMs
Alexandre NEY · Patrick GIRARD · Christian LANDRAULT · Serge PRAVOSSOUDOVITCH · Arnaud VIRAZEL: LIRMM, France · Magali BASTIAN: Infineon, France

7B Delay Faults, IEEE 1500 and IJTAG/SJTAG 8:30 – 10:00
Nicola Nicolici: McMaster University, CAN
Elena Gramatova: Slovak Academy of Sciences, SK

Delay Fault Testing of Interconnect Logic Between Embedded Cores
Ramesh TEKUMALLA: Advanced Micro Devices, USA

A Smart Delay Testing Framework based-on IEEE 1500
Po-Lin CHEN · Hao-Hsuan CHIU · Jhih-Wei LIN · Tsin-Yuan CHANG: Tsinghua University, Taiwan

Extended STAPL as SJTAG engine
Johan HOLMQVIST: Linköpings Universitet, Sweden · Gunnar CARLSSON: Ericsson, Sweden · Erik LARSSON: Linköpings Universitet, Sweden

7C Key Technology: Electrical Contacts 8:30 – 10:00
Joan Figueras: UPC, ES · Carsten Wegener: Infineon, DE

Probing Challenges for Next Generation SoC Devices
Sergio PEREZ: FormFactor, USA
New Low Inductance Socket Technology for High Speed Memory Device Testing
Joachim MOERBT: Advantest, Germany

Multi-site Test – Extraordinary DFT Desired
Peter MUHMENTHALER: Infineon Technologies, Germany

10:00–11:00 Posters & Coffee Break

Defect-Tolerant N²-Transistor Structure for Reliable Design at the Nanoscale
Airam EL-MALEH: King Fahd University of Petroleum & Minerals, Saudi Arabia
Bashir AL-HASHIMI: University of Southampton, United Kingdom
Ahmad AL-YAMANI: King Fahd University of Petroleum & Minerals, Saudi Arabia

Delay Testing for Application-Specific Interconnects of FPGAs based on Inphase Structure
Satoshi OHTAKE · Kosuke YABUKI · Hideo FUJWARA: Nara Institute of Science and Technology, Japan

The Effects of Static Test Compaction for Functional Test Sequences on the Coverage of Stuck-at and Transition Faults
Irith POMERANZ: Purdue University, USA
Sudhakar M. REDDY: University of Iowa, USA

Learning from Failure Analysis: a case study
Federico BARONTI · Roberto RONCELLA · Roberto SALETTI: University of Pisa, Italy
Paolo D’ABRAMO · Luca DI PIRO · H. FABIAN · Monica GIARDI: AustriaMicroSystems, Italy

SAT-based ATPG for Path Delay Faults in Industrial Circuits
Stefan EGGERSGLÜSS · Görschwin FEY · Rolf DRECHSLER: Universität Bremen, Germany
Andreas GLOWATZ · Friedrich HAPKE · Juergen SCHLOEFFEL: NXP Semiconductors, Germany

A Novel Circuit-Oriented SAT Engine and Its Application to Unbounded Model Checking
Yang ZHAO · Tao LV · Lingyi LIU · Hua-wei LI · Xiao-wei LI: Chinese Academy of Sciences, China

A Pattern Selection Approach for Accelerating Soft Error Rate Testing
Alodeep SANYAL · Kunal GANESHPURE · Sandip KUNDU: University of Massachusetts, USA
Reliable Measurement of Interconnect Delays in Presence of Crosstalk-Induced Noise
Michal KOPEC · University of Silesia in Cieszyn, Poland · Tomasz GARBOLINO · Krzysztof GUCWA · Andrzej HLAWICZKA · Silesian University of Technology, Poland

Soft-Error Tolerant Built-In Self-Test Scheme for Random Access Memories Tsu-Wei TSENG · Chun-Hsien WU · Jin-Fu LI · National Central University, Taiwan

ADL-driven Test Pattern Generation for Functional Verification of Embedded Processors
Anupam CHATTOPADHYAY · ISS, Germany · Arnab SINHA · CSE, IIT Kharagpur, India · Diandian ZHANG · Rainer LEUPERS · Gerd ASCHEID · Heinrich MEYR · ISS, RWTH Aachen University, Germany

9A On-Line Testing and Self-Test 11:00 - 12:30
Luigi Carro · UFRGS, BR · Xiao-wei Li · Chinese Academy of Science, CN

A novel approach for online sensor testing based on an encoded test stimulus Norbert DUMAS · Zhou XU · Konstantinos GEORGOPOULOS · Lancaster University, United Kingdom · John BUNYAN · QinetiQ, United Kingdom · Andrew RICHARDSON · Lancaster University, United Kingdom

Selecting Power-Optimal SBST Routines for On-Line Processor Testing Andreas MERENTITIS · Nektarios KRANITIS · Antonis PASCHALIS · University of Athens, Greece · Dimitris GIZOPOULOS · University of Piraeus, Greece

Optimal Contexts for the Self-Test of Coarse Grain Dynamically Reconfigurable Processors Tomoo INOUE · Takashi FUJII · Hideyuki ICHIHARA · Hiroshima City University, Japan

9B Fault Grading and Test Quality 11:00 - 12:30
Joao Paulo Teixeira · IST/INESC-ID, PT · Hideo Fujiwara · Nara Institute of Science and Technology, JP

A Seed-Selection Method to Increase Defect Coverage for LFSR-Reseeding-Based Test Compression Zhanglei WANG · Krishnendu CHAKRABARTY · Duke University, USA · Michael BIENEK · Advanced Micro Devices, USA
Ultra Fast Parallel Fault Analysis on Structurally Synthesized BDDs
Raimund UBAR · Sergei DEVADZE · Jaan RAIK · Artur JUTMAN : Tallinn University of Technology, Estonia

Computation and Application of Absolute Dominators in Industrial Designs
René KRENZ-BÅÅTH · Andreas GLOWATZ · Juergen SCHLOEFFEL : NXP, Germany

11:00–12:30 Test Communities
Christian Landrault : LIRMM, FR · Erik Larsson : Linköpings Universitet, SE

Semiconductor Test Consortium Expands its Charter
Klaus LUTZ : Advantest, Germany

STC – Working Group Docking and Interface
Florian PUTZ : esmo, Germany

The STC’s University Working Group Drives Alignment of Industry
Paul RODDY : Semiconductor Test Consortium STC, USA

14:00–15:00 Embedded Tutorial
Bashir Al-Hashimi : University of Southampton, UK

System-in-Package, a combination of challenges and solutions
Philippe CAUVET : NXP, France · Serge BERNARD · Michel RENOVELL : LIRMM, France

Abstract
System-in-Package (SiP) has recently become a significant technology in the semiconductor industry, offering to the consumer applications many new product features without increasing the overall form factor. In this talk, the basic SiP concepts are first discussed, showing difference between SiP and SoC, illustrated by some examples, drawn from real-life cases. The specific challenges are considered from the testing point of view, focussing on the assembled yield and defect level for the packaged SiP. Various bare-die test techniques to find known-good-dies are described including their limitations, followed by two techniques to test the SiP at the system level: functional system test and embedded component test. A brief discussion on future SiP design and test challenges concludes the presentation.
Embedded Tutorial 14:00–15:00
Paolo Prinetto: Politecnico di Torino, IT

IC Test Cost Benchmarking
Klaus LUTHER: Infineon Technologies, Germany

Abstract: Driven by the increasing complexity of integrated circuits the pressure on test cost reduction increases exponentially as productivity on chip level progresses according to Moore’s Law. A high-level strategic approach for test cost target setting and planning will be explained. The intention is to keep cost of test constant relative to overall cost of goods sold. This method has been developed and used at Infineon over the last couple of years to align our location, equipment and productivity target setting.

Embedded Tutorial 14:00–15:00
Hans Kerkhoff: University of Twente, NL

Wafer Level Reliability Screens
Peter MAXWELL: Micron Technology, USA

Abstract: This tutorial discusses test methods and voltage stress approaches required to ensure effective cost effective defect screening to produce high quality, reliable products. Wafer level reliability screens (WLRS) refers to the application of screens during wafer test that will both activate and detect a sufficient number of defects so that early life failure rate (ELFR) is reduced enough to meet customer spec, preferably without doing burn-in. Further, these screens have to have acceptable yield loss and acceptable test times.

Social Event 15:30–23:00

A stop over in Staufen with Black Forest Cake

Staufen is one of the most picturesque villages in the south of Baden, situated amid magnificent vineyards. More than 1200 years of history, Staufen offers peace and undisturbed tranquility. One of the most famous citizens of Staufen was Johann Georg Faust, the legendary alchemist and magician that probably lived in Staufen about 500 years ago. Today the visitor can read on the wall of the Lions Inn: “…and it is told that the most powerful of devils, Mephistopheles, the one he called brother-in-law when he was still alive, broke his neck, after the pact had expired after 24 years, thus handing over his poor soul to never ending perdition” (in: The 16th century Chronicles of Zimmer).
A Banquet in Badenweiler at Hotel Römerbad

The History of Badenweiler began in Roman times. In 75 AD vassals of the Roman Emperor Vespasian discovered the healing springs, built in the first baths and named the place Aquae Villae or “water town”. The very well preserved ruins of the Roman Baths are one of the most interesting sights of the region. Warm Mediterranean air flows through the Belfort Gap. The Black Forest in the north and east shields the resort from cold winds and temperature fluctuations. Thanks to its situation at a height of 450m, Badenweiler offers splendid views over the Markgräflerland and the Rhine Plain as far as the French Vosges.
How do the holes get into the cheese?

We find the answers

Combining curiosity with innovation

Curiosity is a powerful thing. Children use it to explore the world step by step. They look, study, and ask questions – until they understand. This is how wonderment becomes knowledge.

The people who work in research and development at Endress+Hauser have kept some of this curiosity. After all, it is often the easiest questions that produce the best results.

All over the world, customers rely on Endress+Hauser to find the right answers. This has made us one of the leading providers of measurement devices and automated solutions for industrial process engineering.

www.endress.com

Endress+Hauser AG
Kägenstrasse 2
4153 Reinach/BH.
Switzerland
Phone +41 61 715 77 00
Fax +41 61 715 28 88
info@holding.endress.com
WEDNESDAY, MAY 23RD, 2007

8:30–10:00 Diagnosis & Yield Improvement

Sybille Hellebrand : Universität Paderborn, DE
Aiman El-Maleh : King Fahd University of Petroleum & Minerals, Saudi Arabia

Analyzing Volume Diagnosis Results with Statistical Learning for Yield Improvement
Huaxing TANG · Manish SHARMA · Janusz RAJSKI · Martin KEIM · Brady BENWARE : Mentor Graphics, USA

Diagnostic Test Generation Based on Subsets of Faults
Irith POMERANZ : Purdue University, USA · Sudhakar M. REDDY : University of Iowa, USA

Compound Defects Diagnosis with Non-Compressed Patterns
Yu HUANG · Wu-Tung CHENG · Ruifeng GUO : Mentor Graphics, USA

8:30–10:00 Single Event Upsets

Cecilia Metra : University of Bologna, IT · José Luis Huertas : IMSE-CNMT, ES

Static and Dynamic Analysis of SEU effects in SRAM-based FPGAs
Luca STERPONE · Massimo VIOLANTE : Politecnico di Torino, Italy

Multiple SEU Tolerance in LUTs of FPGAs Using Protected Schemes
Hamid Reza ZARANDI · Seyed Ghassem MIREMADI : Sharif University of Technology, Iran · Costas ARGYRIDES · Dhiraj PRADHAN : University of Bristol, United Kingdom

System level approaches for mitigation of long duration transient faults in future technologies
Carlos LISBÔA : Universidade Federal do Rio Grande do Sul, Brazil · Marcelo ERIGSON : Instituto de Informatica UFRGS, Brazil · Luigi CARRO : Universidade Federal do Rio Grande do Sul, Brazil

10:00–11:00 Posters

Exploiting Arithmetic Built-In Self-Test Techniques for Path Delay Fault Testing
Øystein GJERMUNNDNES · Einar J. AAS : Norwegian University of Science and Technology, NTNU, Norway
Efficient Search Space Pruning for Multi Valued SAT based ATPG
Maheshwar CHANDRASEKAR · Michael HSIAO : Virginia Tech, USA

A Defect-Tolerant Architecture for End of Roadmap CMOS
Maryam ASHOUEI : Georgia Tech, USA · Adit SINGH : Auburn University, USA · Abhijit CHATTERJEE : Georgia Tech, USA

Minimal March Tests for Dynamic Faults in Random Access Memories
Gurgen HARUTYUNYAN · Valery VARDANIAN : Virage Logic, Armenia

An Efficient Method to Tolerate Multiple Bit Upsets in SRAM Memory
Costas A ARGYRIDES : University of Bristol, United Kingdom · Hamid R. ZARANDI : Sharif University of Technology, Iran · Dhiraj PRADHAN : University of Bristol, United Kingdom

A Reconfigurable Broadcast Scan Compression Scheme Using Relaxation Based Test Vector Decomposition
Aiman EL-MALEH · Mustafa ALI · Ahmad AL-YAMANI : King Fahd University of Petroleum & Minerals, Saudi Arabia

TAM design and Test Data Compression for SoC Test Cost Reduction
Julien DALMASSO · Marie-Lise FLOTTES · Bruno ROUZEYRE : LIRMM, France

Bayesian estimation for an imperfect test and repair model
Simon WILSON : Trinity College, Ireland · Suresh GOYAL : Lucent Technologies Bell Labs, USA

Test-Data Compression Based on Variable-to-Variable Reusable Huffman Coding
Chrisovalantis KAVOUSIANOS : University of Ioannina, Greece · Emmanouil KALLIGEROS · Dimitris NIKOLOS : University of Patras, Greece

Transistor Level Timing Analysis Considering Multiple Inputs Simultaneous Switching
Li ZHENTAO · Shuming CHEN : National University of Defence Technology, China
Error Tolerance: Are Good-enough Chips Good Enough?
Organizer: Ilia Polian : Universität Freiburg, Germany

Abstract The advent of nanoscale technologies is leading to more and more errors, both hard and soft, showing up in the circuits. Known fault tolerance approaches can help in solving the problem, but often at an prohibitively high cost. Error tolerance is a novel paradigm stating that circuits containing defects, or good-enough (rather than perfect) chips, can operate in a way acceptable with respect to an application. First experiments demonstrated that a significant share of single-stuck-at faults in MPEG and JPEG devices lead to an acceptable performance. This panel will address the following questions: Is error tolerance a concept suited to achieve adequate yields in inherently unreliable nanoscale technologies? What are the implications of error tolerance on the design, test and verification flows? Is the market willing to accept good-enough chips? Is error tolerance applicable to hard or soft errors? What are the limitations?

Panelists (to include)
Rob Aitken : ARM, USA
Abhijit Chatterjee : Georgia Tech, USA
Sandip Gupta : University of Southern California, USA
John P. Hayes : University of Michigan, USA
Jens Leenstra : IBM R&D, Germany

Test Access for Chips, Boards and Multi-Board Systems: What is Really Needed?
Organizers: Robert Ruiz : Synopsys, USA
Erik Larsson : Linköpings Universitet, Sweden

Abstract What do you do when chips on a board behave unexpectedly? How do you know if the errors originate from functional design bugs or physical manufacturing defects? Do you have access to the internal silicon signals for observation and/or stimulation? Can you access the signals even when chips are mounted on boards and placed into systems? Do IJTAG and SJTAG initiatives help with this issue, or is something else needed?

Speakers (to include)
Bill Eklow : Cisco, USA
Gunnar Carlsson : Ericsson, Sweden
Jeff Rearick : AMD, USA
Bart Vermeulen : NXP, The Netherlands
Delay and Performance Test
14:00–15:30

Michel Renovell: LIRMM, FR
Adam Osseiran: Edith Cowan University, AUS

Automatic generation of instructions to robustly test delay defects in processors
Sankar GURUMURTHY · Ramtilak VEMU · Jacob ABRAHAM: University of Texas, USA · Daniel G. SAAB: Case Western Reserve University, USA

On the Automatic Generation of Test Programs for Path-Delay Faults in Microprocessor Cores
Paolo BERNARDI · Michelangelo GROSSO · Edgar SÁNCHEZ · Matteo SONZA REORDA: Politecnico di Torino, Italy

Purely Digital BIST for any PLL or DLL
Stephen SUNTER · Aubin ROY: LogicVision, Canada

Closing Session
15:30–16:00

Closing Remarks and Introduction to ETS’08
Matteo Sonza Reorda: Politecnico di Torino, Italy
ETS’08 General Chair

Workshops
16:00–19:00

3rd IEEE European Workshop on Board Test
held in Conjunction with the IEEE ETS 2007.

4th IEEE International Workshop on Silicon Debug and Diagnosis
held in Conjunction with the IEEE ETS 2007.

To be continued on Thursday, May 24.
Corporate Supporters

Platinum

SICK
Sensor Intelligence.

Gold

Endress+Hauser
People for Process Automation

Silver

VERIGY
Corporate Supporters

Bronze

ADVANTEST
Technology Support on the Leading Edge

Mentor Graphics

MICRONAS

NXP
founded by Philips

Optimal Test

Q-STAR Test
The Current Test Company

STC
Semiconductor Test Consortium

TERADYNE